Density Calculator
Density Calculator / /
The density of a material, typically denoted using the Greek symbol ρ, is defined as its mass per unit volume. ρ = m V where: ρ is the density
m is the mass
V is the volume The calculation of density is quite straightforward. However, it is important to pay special attention to the units used for density calculations. There are many different ways to express density, and not using or converting into the proper units will result in an incorrect value. It is useful to carefully write out whatever values are being worked with, including units, and perform dimensional analysis to ensure that the final result has units of massvolume. Note that density is also affected by pressure and temperature. In the case of solids and liquids, the change in density is typically low. However, when regarding gases, density is largely affected by temperature and pressure. An increase in pressure decreases volume, and always increases density. Increases in temperature tend to decrease density since the volume will generally increase. There are exceptions however, such as water's density increasing between 0°C and 4°C. Below is a table of units in which density is commonly expressed, as well as the densities of some common materials.
Density Calculator
Please provide any two values to the fields below to calculate the third value in the density equation of ρ = mV. Density (ρ) Volume (V) Mass (m)The density of a material, typically denoted using the Greek symbol ρ, is defined as its mass per unit volume. ρ = m V where: ρ is the density
m is the mass
V is the volume The calculation of density is quite straightforward. However, it is important to pay special attention to the units used for density calculations. There are many different ways to express density, and not using or converting into the proper units will result in an incorrect value. It is useful to carefully write out whatever values are being worked with, including units, and perform dimensional analysis to ensure that the final result has units of massvolume. Note that density is also affected by pressure and temperature. In the case of solids and liquids, the change in density is typically low. However, when regarding gases, density is largely affected by temperature and pressure. An increase in pressure decreases volume, and always increases density. Increases in temperature tend to decrease density since the volume will generally increase. There are exceptions however, such as water's density increasing between 0°C and 4°C. Below is a table of units in which density is commonly expressed, as well as the densities of some common materials.