Postdoctoral Scientists Win Malaniak Award Cedars Sinai

Postdoctoral Scientists Win Malaniak Award Cedars Sinai

Postdoctoral Scientists Win Malaniak Award Cedars-Sinai Skip to content Close Select your preferred language English عربى 简体中文 繁體中文 فارسي עִברִית 日本語 한국어 Русский Español Tagalog English English عربى 简体中文 繁體中文 فارسي עִברִית 日本語 한국어 Русский Español Tagalog Translation is unavailable for Internet Explorer Cedars-Sinai Home 1-800-CEDARS-1 1-800-CEDARS-1 Close Find a Doctor Locations Programs & Services Health Library Patient & Visitors Community My CS-Link RESEARCH clear Go Close Navigation Links Academics Faculty Development Community Engagement Calendar Research Research Areas Research Labs Departments & Institutes Find Clinical Trials Research Cores Research Administration Basic Science Research Clinical & Translational Research Center (CTRC) Technology & Innovations News & Breakthroughs Education Graduate Medical Education Continuing Medical Education Graduate School of Biomedical Sciences Professional Training Programs Medical Students Campus Life Office of the Dean Simulation Center Medical Library Program in the History of Medicine About Us All Education Programs Departments & Institutes Faculty Directory 2022 Research News Back to 2022 Research News Postdoctoral Scientists Win Malaniak Award Two postdoctoral scientists—one studying a way to reduce disability after spinal cord injury, and one studying the causes of a type of heart failure with no effective therapies—are the winners of this year's Cedars-Sinai Bohdan (Danny) Malaniak Award for Excellence in Postdoctoral Research. Odelia B. Cooper, MD Sarah McCallum, PhD, and Thassio Mesquita, PhD, were selected by a panel of Cedars-Sinai investigators from among four finalists at a virtual abstract presentation held Feb. 1. "This award aims to foster translational research, enrich knowledge and encourage the development of postdoctoral investigators," Odelia B. Cooper, MD, chair of the Malaniak Award Committee and associate professor of Medicine at Cedars-Sinai, said at the event. Every year, the Malaniak Award Committee selects two postdoctoral scholars to receive the honors and a $3,000 prize. The Burns and Allen Research Institute at Cedars-Sinai and the Clinical and Translational Science Institute run and fund the program. The award is named in honor of Danny Malaniak, who served as associate vice president for Academic Affairs at Cedars-Sinai and later as a consultant for the Cedars-Sinai Health System until his death in 2013. Joshua Burda, PhD During the presentation, McCallum described how she is investigating the physical damage a person experiences after a spinal cord injury. "The spinal cord is a like a freeway," explained McCallum, who works in the lab of Cedars-Sinai investigator Joshua Burda, PhD. "It allows two-way communication to connect the body and the brain. When a part of this freeway is damaged, communication is disrupted. Minimizing this damage is really key to maintaining communication." When nerve cells die at the site of a central nervous system injury, they generate a toxic environment, which spreads into undamaged tissue and causes even more cells to die. This process is known as a secondary injury and may continue for weeks or months after the initial injury. McCallum noticed that more cell death occurs in areas of the spinal cord where cells called astrocytes have already died. Astrocytes are essential support cells that keep the nervous system healthy. McCallum was interested in studying how astrocyte survival is controlled after an injury. To study this process, she developed and applied a gene-editing method that targets astrocytes within the injured mouse spinal cord to learn about biologic mechanisms that may aid astrocyte survival. McCallum discovered that astrocyte survival prevents cell death after spinal cord injury, restricting the size of the injury and limiting disability. McCallum is continuing to study mechanisms that aid astrocyte survival and how these can be applied to new drugs and treatments for spinal cord injury. Mesquita's presentation focused on his work investigating a type of heart failure that occurs when the lower left chamber of the heart cannot properly fill with blood. The condition, known as heart failure with preserved ejection fraction, currently has no effective therapies and can lead to sudden death. "One of the explanations for why there are no effective therapies is that we don't understand the mechanisms underlying this very complex syndrome,"Mesquita said. Scientists do know that the sinoatrial node, a group of specialized cells called located near the right atrium of the heart, helps regulate the heartbeat. By conducting exercise testing on mice, Mesquita discovered that abnormalities in electrical components of the sinoatrial node limit increases in heart rate and, consequently, exercise performance. These abnormalities could be the targets of novel therapies to treat this condition. Mesquita conducts research under the mentorship of Eugenio Cingolani, MD, assistant professor of Medicine and director of Preclinical Research and the Cardiogenetics Program at Cedars-Sinai, and Eduardo Marbán, MD, PhD, the Mark Siegel Family Foundation Distinguished Chair and executive director of the Smidt Heart Institute at Cedars-Sinai. Postdoctoral scientists at Cedars-Sinai will have the chance to apply for next year's award in the fall. Please ensure Javascript is enabled for purposes of website accessibility
Share:
0 comments

Comments (0)

Leave a Comment

Minimum 10 characters required

* All fields are required. Comments are moderated before appearing.

No comments yet. Be the first to comment!